CEIS114 Final Course

Project
Traffic Controller
Hector Acosta

Introduction

* Traffic management is a critical aspect of
urban planning and development, impacting
everything from commuter efficiency to
safety and environmental concerns.

* Traditional traffic light systems are often
static and inflexible, unable to adapt to
dynamic traffic patterns or respond to
emergencies effectively.

* With the increasing complexity of urban
traffic, there is a growing need for intelligent
traffic management solutions that can
optimize traffic flow, enhance safety, and
reduce congestion.

Project Overview

* The Smart Traffic Light Controller projectis
designed to address these challenges by
creating an advanced traffic management
system using modern technology.

* The project leverages an ESP32
microcontroller, LEDs, sensors, and web-
based interfaces to develop a traffic light
system that can adapt to various traffic
conditions and respond to emergencies.

* The system aims to improve traffic flow,
provide real-time monitoring, and ensure
safety through innovative features such as
emergency mode and remote access.

Objectives

Traffic Light Control: Develop a traffic light controller system that can manage multiple traffic
signals at an intersection. The system will use colored LEDs to represent traffic lights for different
directions and implement timing sequences to control the flow of traffic.

Emergency Mode: Implement an emergency mode feature that can be activated in response to
emergency situations. This feature will turn all traffic lights red and activate a flashing blue signal to
alert drivers, ensuring that emergency vehicles can pass through intersections safely and efficiently.

Remote Access: Create a remote access system that allows users to manage and monitor the
traffic lights via a web browser. This will involve setting up a web server on the ESP32, providing a
user-friendly interface to control the traffic lights and view their status from any location.

Alternative Control Mechanism: Explore an alternative control mechanism using a motion sensor.
This system will enable traffic lights to operate continuously on the major street and switch to the
minor street only when motion is detected, optimizing traffic flow and reducing unnecessary stops.

Components and
Setup

* ESP32 Microcontroller: The central processing unit for
controlling the traffic lights and handling web server
functions.

* LEDs: Red, yellow, and green LEDs to represent traffic
signals.

* Buttons: For manual control and testing of the system.
* LCD Display: To show system status and information.
* Buzzer: For alert signals and notifications.

* Motion Sensor:For implementing the alternative
control mechanism.

* Blue LED: For emergency signaling.

III‘\III

i

& 0

Implementation

* Design and Simulation:

* | use Wokwi to design and simulate the traffic
light system circuit, including the integration of
LEDs, buttons, and sensors.

World's most advanced ESP32 simulator

* Develop and test the code for controlling the

traffic lights and implementing the emergency T) —= Do Not wWalk ==
by

mOde and remOte access funCtionalitieS. sketchino @ diagramjson @ lbrariesbt Library Manager ¥ == Lo Lee walk =
U] === Hactor Beosta === Emergency button was pressed
* Web Interface: o -= Do Not Walk ==
4 #include <LiquidCrystal 12C.h> //led
iquidCrysta ¢d(8x27,16,2);//s2t the L(D address to 8x27 for a 16 by 2 display =D N t W 1k ==
* Setup aweb serveronthe ESP32to create a B D coun: _01@ - Walk =<
. 7 /] Set 6°10s for LED and PIR Notion Sensor - - -
userinterface for remote mana gement. Pt isiméiwﬂimﬂ* (ELe) Led Count = 9 == Walk ==
. . . 10 int pirStete = 0 ; C t = 8 == I]_k T
« This interface will allow users to control and 4 et oun i
. . . 12 const int En button = 23; // Ew\\zr‘gsn:j, button Count = 7 == Wa]_l.(==
monitor the traffic lights from a web browser. P A Count = 6 == Walk ==
15 ‘ton;t Int red LED1 = 14; /! The red LEDI is wired to ESP32 board pin GPI014 N o 1 |_< T
» Testing and Documentation: ot e e 5 2k o T e
const Int red = 25; // The red LED2 is wired to Mega board pin 2 oun = == d ==
. . . 12 const _ﬂt yelit;TEDZ z 26; // The)Li[_)o LED is wtwir'e‘d to ESPEZD.‘inszIJOSZE t _ _ 1 I(o
* Conductthorough testing of the traffic light ot 3] g 5 e i 0 count = 3 == Walk ==
. . B Count = 2 == Walk ==
system, including the emergency mode and § e oo i
remote access features . it T Brut=d==rEl: =
. 25 (Em_button, INPUT_PULLUP); / ressed, 1 = unpressed button Count = B == Wa 1|< —
26 (Xw_button, INPUT PULLUP); / rassed, 1 = unpressed button
. . . u (s QUTAT); == Do Not Walk ==
« Documentthe design, implementation, and o iy e
. . . 2 : ed, LOW); // Set Flashing bhite (Elue) Light to LON == 'a] o) a ==
tgsthg process, prowdlng screepshots of the 3 g, — Do Not Walk ==
circuit simulation, code simulation, and e motion detected

U Ved catlireanl 0 BYe /1 ralumn#l snd Rau #

output from the Serial Monitor.

Expected Outcomes

By the end of this
project, | expect to
deliver a fully
functional Smart Traffic
Light Controller that:

Efficiently manages
traffic light sequences.

Responds to
emergency situations
with an effective
emergency mode.

Provides remote
access and control via
a web interface.

Offers an alternative
control mechanism for
optimizing traffic flow

based on motion
detection.

CEIS 114
Module 2

Project Plan for loT Traffic
Controller

Introduction to Module 2:

In this module, | will dive into the practical setup of our Smart Traffic Light
Controller system. First, I'll ensure our ESP32 is properly installed and powered
on. This step is crucial for establishing the foundation of our project.

I’ll start by examining the circuit setup, as depicted in the screenshot on this
slide. Once the ESP32 is up and running, I’'ll proceed with scanning for available
WiFi networks, which will be illustrated through the Serial Monitor screenshot.

Let’s move forward and get our ESP32 configured for network communication.
On the next slide, we'll see the detailed circuit setup, followed by the WiFi scan
results.

ESP32

e Microcontroller mounted
and powered ON

* Here you see the
screenshot of my circuit
setup, showing the ESP32
installed and powered.

* Thisvisual confirms that |
have correctly connected my
components and the
microcontrolleris
operational.

WOKW! [@ snvs‘ v e @ Lﬂyodulel-HectorA:osta 7

ESP32 WiFi -

°°° aassa mamsa sasas sssas assna

e Serial Monitor showing

the available networks I 5 oo os0s00ssestnst
* | perform a WiFi scan to |+ vmer svess semve seess seveet |
detect available networks.
1 networks found.
* The Serial Monitor L: Wokwi-GUEST (-92)
screenshot on this slide S
demonstrates the scan done!
Scanrj“ng pI‘OCG.SS, . 1 networks found.
allowing me to identify and L: Wokwi-GUEST (-75)
connect to my desired ,
scanning...
network for further scan donel
communication.

1 networks found.
1: Wokwi-GUEST (-87)

CEIS 114
Module 3

Creating the Traffic Controller

Introduction for Module 3:

In this module, | move forward with our Smart Traffic Light Controller project
by integrating LED indicators to visualize the system's operation.

I'll begin by connecting the LEDs to my circuit and ensuring they function as
expected. The focus will be on demonstrating the physical setup of the LEDs
and validating their performance through my breadboard configuration.

Circuit with
working LEDs

Simulation

e o o (01:44.710 (#)99%

* This slide showcases the
updated circuit with the
LEDs powered ON.

* Thisvisual representation
highlights how the LEDs
are integrated into the
breadboard, providing a
clear view of their
placement and
connection.

Code
Commenting

* This slide presents a
screenshot of the code
editor, where | include a
comment with my name.

* This serves to illustrate the
code |l implemented for
controlling the LEDs,
highlighting my personal
contribution to the project.

WOKWI [save ~ | & sHare

sketch.ino @

ey

W W

@ M 00 N

e el =
Mo W

16
17
18
19
20

diagram json @ Library Manager ™
/{ === Hector Acosta ====
// Module #3 project
const int red LED1 = 14; // The red LED1 is wired to ESP32 board pin GPIO14

const int yellow LED1 = 12; // The yellow LED1 is wired to ESP32 board pin GPIO12

const int green_LED1 = 13; //

The green LED1 is wired to ESP32 board pin GPIO13

// the setup function runs once when you press reset or power the board

void setup()
{

(red_LED1, OUTPUT); // initialize digital pin GPIO14 (Red LED1) as an output.
(yellow_ LED1, OUTPUT); // initialize digital pin GPIO12 (yellow LED1) as an output.

(green_LED1, OUTPUT); //
by

initialize digital pin

[/ the loop function runs over and over again forever

void loop() {
/{ The next three lines of code turn

the red LED1

(red_LED1, HIGH); // This should turn on the

(yellow LED1 , LOW); //

(200@); // wait for 2 seconds
[/ The next three lines of code turn
(red_LED1, LOW); // This
(yellow LED1 , LOW); //

(green_ LED1, HIGH); //

(2000); // wait for 2 seconds
[/ The next three lines of code turn
(red _LED1, LOW); // This
(yellow LED1 , HIGH); //

=

aon

=3

This should turn off
(green_LED1, LOW); // This should turn off th

the green LED1
hould turn off the

This should turn off
This should turn on th

the yellow LED1
hould turn off the
his should turn on

GPIO13 (green LED1) as an output.

RED LED1
the YELLOW LED1
e GREEN LED1

RED LED1
the YELLOW LED1
e GREEN LED1

RED LED1
the YELLOW LED1

(green_LED1, LOW); // This should turn off the GREEN LED1

(2000); // wait for 2 seconds

CEIS 114
Module 4

Creating a Multiple Traffic
Light Controller

Introduction to Module 4:

Having successfully set up our ESP32 and connected it to my WiFi network, |
now ready to dive into Module 4. This module focuses on integrating my
circuit components and programming the ESP32 to control them.

In this Module 4, I'm setting the stage for interactive and responsive control,
which is a key aspect of my Smart Traffic Light Controller project. Let’s
explore how these elements come together to bring our system to life.

The circuit with
working LEDs

* | start by examining the
circuit | been assembled
on the breadboard, which
includes the LEDs | be
controlling.

* This screenshot will
showcase how the
components are arranged
and how the connections
are made to ensure proper
functionality.

Code in Wokwi

* Following the circuit
overview, |'ll review the code
that powers our setup.

* This code snippet, displayed
in the Code Editor, not only
shows the logic I've
implemented thatincludes
a personal touch—my name
is embedded in the
comments to track
contributions and provide
context.

Module 4 Hector Acosta Va

A SHARE L by
sketch.ino @ diagram._json @ Library Manager ¥
1 // === Hector Acosta ====
2 // Module #4 project
3 J// Define some labels
4 const int red_LED1 = 14; // The red LED1 is wired to ESP32 board pin GPIO14
5 const int yellow LED1 =12; // The yellow LED1 is wired to ESP32 board pin GPIO12
6 const int green_LED1 = 13; // The green LED1 is wired to ESP32 board pin GPIO13
7 const int red_LED2 = 25; // The red LED2 is wired to Mega board pin GPIO25
8 const int yellow LED2 = 26; // The yellow LED2 is wired to Mega board pin GPIO 26
9 const int green_LED2 = 27; // The green LED2 is wired to Mega board pin GPIO 27
10 // the setup function runs once when you press reset or power the board
11 void setup() {
12 pinMode (red_LED1, OUTPUT); // initialize digital pin GPIO14 (Red LED1) as an output.
13 e(yellow LED1, OUTPUT); // initialize digital pin GPIO12 (yellow LED1) as an outp
14 le(green_LED1, OUTPUT); // initialize digital pin GPIO13 (green LED1) as an output
15 de(red_LED2, OUTPUT); // initialize digital pin GPIO25(Red LED2) as an output.
16 e(yellow LED2, OUTPUT); // initialize digital pin GPI026 (yellow LED2) as an outp
17 le(green_LED2, OUTPUT); // initialize digital pin GPIO27 (green LED2) as an output
18
19 // the loop function runs over and over again forever
20 void loop() {
21 // The next three lines of code turn on the red LED1
22 e(red_LED1, HIGH); // This should turn on the RED LED1
23 Irite(yellow_LED1 , LOW); // This should turn off the YELLOW LED1
24 ~ite(green_LED1, LOW); // This should turn off the GREEN LED1
25 ; [//Extended time for Red light#1 before the Green of the other side turns C
26 three lines of code turn on the green LED2 for 2 seconds
27 ~ite(red_LED2, LOW); // This should turn off the RED LED2
28 ~ite(yellow_LEDZ , LOW); // This should turn off the YELLOW LED2
29 talWrite(green_LED2, HIGH); // This should turn on the GREEN LED2
38 delay(2000); // wait for 2 seconds
31 // The next three lines of code turn on the red LED1
32 ~ite(red_LED1, HIGH); // This should turn on the RED LED1
33 (Irite(yellow_LED1 , LOW); // This should turn off the YELLOW LED1
34 digitalWrite(green_LED1, LOW); // This should turn off the GREEN LED1
35 // The next three lines of code turn on the yellow LED2
36 digitalWrite(red_LED2, LOW); // This should turn off the RED LED2

CEIS 114
Module 5

Creating a Multiple Traffic
Light Controller with a Cross

Walk

Introduction to Module 5:

In Module 5, | focus on testing the functionality of our Smart
Traffic Light Controller.

This module is crucial for ensuring that our system operates as
iIntended and can effectively manage traffic lights in real-time.

The circuit with
working LEDs

* I’ll start by showcasing my
circuit setup.

* The picture of the
breadboard with the LEDs
iLluminated will give you a
clear view of the hardware
configuration and how the
LEDs are integrated into
the system.

Module 5 Hector Acosta P

TI I o < ! by
e co e I n sketch.ino diagram_json Library Manager ~

1 // === Hector Acosta ====
o 2 /{ Module #5 project
3 const int red LED1 = 14; // The red LED1 is wired to ESP32 board pin GPIOL14
4 const int yellow_ LED1 =12; // The yellow LED1 is wired to ESP32 board pin GPIO12
5 const int green_LED1 = 13; // The green LED1 is wired to ESP32 board pin GPIO13
6 const int red LED2 = 25; // The red LED2 is wired to Mega board pin GPIO25
7 const int yellow LED2 = 26; // The yellow LED2 is wired to Mega board pin GPIO 26
. . o . 8 const int green_LED2 = 27; // The green LED2 is wired to Mega board pin GPIO 27
i ThIS COde In WOkWI Wlll 9 int Xw_wvalue;
. . 18 const int Xw_button = 19; //Cross Walk button
hlghl_lght the Segment 11 // the setup function runs once when you press reset or power the board
) . 12 void setup() {
Where I Ve InClUded my 13 (Xw_button, INPUT_PULLUP); // B=pressed, 1 = unpressed button
. 14 (115200);
name In the Comments’ 15 (red_LED1, OUTPUT); // initialize digital pin 14 (Red LED1) as an output.
. ' 16 (yellow_LED1, OQUTPUT); // initialize digital pin 12 (yellow LED1) as an output.
demonstratlng the COde S 17 (green_LED1, OUTPUT); // initialize digital pin 13 (green LED1) as an output.
. . 18 (red_LED2, OUTPUT); // initialize digital pin 25(Red LED2) as an output.
Customlzatlon and 19 (yellow_LED2, QUTPUT); // initialize digital pin 26 (yellow LED2) as an output.
20 (green_LED2, QOUTPUT); // initialize digital pin 27 (green LED2) as an output.
personal touch. 2)
22 // the loop function runs over and over again forever
23 void loop() {
24 // read the cross walk button value:
25 Xw_value= (Xw_button);
26 if (Xw_value == LOW){ // if crosswalk button (X-button) pressed
27 (yellow LED1 , LOW); // This should turn off the YELLOW LED1
28 (green_LED1, LOW); // This should turn off the GREEN LED1
29 (yellow LED2 , LOW); // This should turn off the YELLOW LED2
30 (green_LED2, LOW); // This should turn off the GREEM LED2
31 for (int i=1@; i»@; i--)
32 4
33 (" Count = "); . (i);
34 (" == Walk == ");
35 (red_LED1, HIGH); // This should turn on the RED LED1
36 (red_LED2, HIGH); // This should turn on the RED LED2
37 (sea); / 9.5 seconds

The Serial Monitor
in Wokwi

* | review the output from
the Serial Monitor.

* This screenshot will
show the live data being
transmitted and
received, confirming
that my system is
functioning correctly
and that the traffic light
controls are responding
as expected.

Hlation

00

Mot wWalk ==
Mot wWalk ==
= 10 == Walk ==
= 9 == Walk
= 8 == Walk
= 7 == Walk
= 6 == Walk
= 5 == Walk
= 4 == Walk
= 3 == Walk
= 2 == Walk
= 1 == Walk
Mot wWalk ==

CEIS114

Module 6

Creating a Multiple Traffic Light
Controller with a Cross Walk
and an Emergency Buzzer

ThePhoto by PhotoAuthor is L

o ']

Introduction to Module 6:

In Module 6, | focus on the crucial phase of testing and
validating my Smart Traffic Light Controller project.

This module is designed to ensure that my circuit operates
correctly and meets the project requirements.

The circuit with
working LEDs and LCD
display

()07:10.035 (#)99%

* | start by examining the
physical setup of my
project.

* This picture will show the
breadboard with the LEDs
illuminated and the LCD
displaying the intended
messages.

* Thisvisualwill help me to
confirm that the hardware
Is assembled correctly and
functioning as expected.

WOKWI | B save

sketch.ino @ diagram json & libraries txt Library Manager ™
// === Hector Acosta ====
// Module #6 project #include <Wire.h> //lcd

1
2
3 #include <LiquidCrystal T2C.h> //lecd
4 LiquidCrystal_I2C lcd(©x27,16,2); //set the LCD address to 8x3F for a 16 chars and 2- line display
5 // if it does not work then try 8x3F, if both addresses do not work then run the scan code below
6 const int bzr=32; // GPIO32 to connect the Buzzer
7 //==================== |(D ====================
3 const int red_LED1 = 14; // The red LED1 is wired to ESP32 board pin GPIO14
H 9 const int yellow LED1 =12; // The yellow LED1 is wired to ESP32 board pin GPIO12
® I del-ve Into the COde 10 const int green_LED1 = 13; // The green LED1 is wired to ESP32 board pin GPIO13

behind the ro'eCt 11 const int red_LED2 = 25; // _lhe red LED2 is wired to Mega board pin GPIO25
p J . 12 const int yellow_ LED2 = 26; /
13 const int green_LED2 = 27; //

14 int Xw_value;

i This Slide Wi I.l. featu re a 15 const int Xw_button = 19; //Cross Walk button

16 void setup(
screenshot of the code 5 Ot
. . . 18 . (115200);
Wlth my name InCl.Uded In 19 (¥w_button, INPUT_PULLUP); // @=pressed, 1 = unpressed button
20 led.init(); // initialize the lcd lcd.backlight();

the CO mm e ntS, 21 lcd.setCursor(0,8); // column#d and Row #1

22 led. (" === CEIS114 ===");

/ The yellow LED2 is wired to Mega board pin GPID 26

The green LED2 is wired to Mega board pin GPIO 27

ShOWCGSIﬂg my 23 (bzr,0UTPUT) ;
. . 24 (red_LED1, OUTPUT); // initialize digital pin 14 (Red LED1) as an output.
Contrlbutlon and 25 (yellow_ LED1, OUTPUT); // initialize digital pinl2 (yellow LED1) as an output.
. 26 (green_LED1, OUTPUT); // initialize digital pin 13 (green LED1) as an output.
understa nd|ng Of the 27 (red_LED2, OUTPUT); // initialize digital pin 25(Red LED2) as an output.
. 28 (yellow_LED2, OUTPUT); // initialize digital pin 26 (yellow LED2) as an output.
programmlng aSpeCtS. 29 (green_LED2, OUTPUT); // initialize digital pin 27 (green LED2) as an output.
30}
31 // the loop function runs over and over again forever
32 void loop()
33
34 // read the cross walk button value:
35 Xw_value= (Xw_button);
36 if (Xw_value == LOW){ // if crosswalk button (X-button) pressed
37 (yellow_LED1 , LOW); // This should turn off the YELLOW LED1

° ° ~st:0x1 (POWERON_ RESET),boot:ex13 (SPI_FAST_FLASH BOOT)
Serlal Monltor configsip: @, SPIWP:@xee
1k drv:exee,q drv:exe0,d drv:exee,csd drv:exee,hd drv:0xee,wp drv:oxee
node:DI0, clock div:2
load:ex3fffee3e,len:1156
load:9x40078000,len:11456

* | review the outputin the 10 @ tail 12 room 4
Serial Monitor. load:0x40080400,len:2972
antry ©x488885dc
* This screenshot will Count = 1@ == Walk ==
provide insight into the Count = 9 == Walk ==
. Count = 8 == Walk ==
real-time data and status count = 7 —— walk -
updates from my ESP32, Count = 6 == Walk ==
validating that the data is Count =5 == Hait
0 Count = 4 == Wa ==
bgmg procesged and ot - 3 ek
displayed as intended. Count = 2 —= Walk —=
Count = 1 == Walk ==
Count = @ == Walk ==

== Do Not Walk ==
== Do Not Walk ==
== Do Not Walk ==

CEIS 114
Module 7
Project-

Option 2

Multiple Traffic Light
Controller with Cross Walk
and an Emergency Buzzer
with a SMART Sensor

Introduction to Module 7:

Welcome to Module 7, where | finalize my Smart Traffic Light Controller
project. In this module, | focus on ensuring that all components work
together seamlessly and meet my project objectives.

In this module, | validate my design, troubleshoot any issues, and
confirm that my Smart Traffic Light Controller is ready for deployment.
Let’s dive into the details of our final testing and operational phase!!

The circuit with working

LEDs and LCD display
(Building/Operation)

* | start by examining the
circuit setup with the
working LEDs and LCD

display.

* This screenshot will
demonstrate the
integrated system's
operation, highlighting how
the LEDs and display
respond to various inputs
and conditions.

The code

* | delve into the code that
drives this operation.

* This slide will showcase
the code editor with my
final code, providing
insight into the logic and
functionality behind our
system.

WOKWI [save ~ v Final Project Option2 Hector Acosta °*

by
sketch.ino @ diagram.json @ libraries.txt Library Manager ™
1 {{ === Hector Acosta ====
2 / Final Project Component - Option 2
3 #include <Wire.h> //lcd
4 #include <lLiquidCrystal I2C.h> //lcd
5 LiquidCrystal_I2C lcd(@x27,16,2);//set the LCD address to 8x27 for a 16 by 2 display
6 const int bzr=32; // GPIO32 to connect the Buzzer
7 /{ Set GPIOs for LED and PIR Motion Sensor
8 const int led = 16; // Flashing White (Blue) Led
9 const int motionSensor = 17;
19 int pirState = @ ;
11 int j,Em_value,Xw_value;
12 const int Em_button = 23; // Emergency button
13 const int Xw_button = 19; //Cross Walk button
14 //==================== | (D ==================o=
15 const int red_LED1 = 14; // The red LED1 is wired to ESP32 board pin GPIO14
16 const int yellow LED1 =12; // The yellow LED1 is wired to ESP32 board pin GPIO12
17 const int green_LED1 = 13; // The green LED1 is wired to ESP32 board pin GPIO13
18 const int red_LED2 = 25; // The red LED2 is wired to Mega board pin GPIO25
19 const int yellow LED2 = 26; // The yellow LED2 is wired to ESP32 pin GPIO 26
29 const int green_LED2 = 27; // The green LED2 is wired to Mega board pin GPIO 27
21 void setup() {
22 [{================Motion Detector initialization =====
23 / PIR Motion Sensor mode INPUT
24 (motionSensor, INPUT);
25 (Em_button, INPUT_PULLUP); // @=pressed, 1 = unpressed button
26 (Xw_button, INPUT_PULLUP); // @=pressed, 1 = unpressed button
27 (bzr,OUTPUT);
28 (led, OUTPUT);
29 (led, LOW); // Set Flashing White (Blue) Light to LOW
30 S
31 (115200);
32 led.init(); // initialize the lcd
33 lcd.backlight();
A Trd catlimcnant (e 6. /7 Faluma#l and Row #1

== Do Not Walk ==

® ° == Do Not Walk ==
Serlal Monltor Emergency button was pressed

== Do Not Walk ==

== Do Not Walk ==
Count = 10 == Walk ==
* | review the Serial Monitor count = 9 == Walk ==
output, which confirms Count = 8 —— Walk —
that my system is Count = 7 == Walk ==
functioning as intended. count = 6 == Walk ==
* This screenshot will Count = 5 == Walk ==
illustrate how the system Count = 4 == Walk ==
processes and displays Count = 3 == Walk ==
real-time data, ensuring Count = 2 == Walk ==
that everything operates Count = 1 == Walk ==
smoothly. Count = @ == Walk ==

== Do Not Walk ==

== Do Not Walk ==

== Do Not Walk ==

motion detected

Challenges Faced

Debugging the Programs

Issue Identification:
Difficulty pinpointing errorsin code.
Complex interactions between hardware and software.

Troubleshooting Steps:
Extensive code reviews.

Implementing debug statements and using Serial Monitor.

Testing different configurations and scenarios.

Resolution:
Refined code through iterative testing.
Adjusted hardware connections for better stability.

Lessons Learned:
Importance of systematic debugging.

Enhanced understanding of ESP32 programming and
hardware integration.

_mod
-l‘t‘or_-)d .us e:y

r_mod.use_z

"election at the end -add
' ob.select= 1
Jer_ob.select=1
Mntext.scene.objects.activg
M "Selected” + str(modifier i
#eirror _ob.select = 0
bpy . context. selected_ob®
3 ,.ta.objects[one.name] .SeM

rint(“please select exacthy ™

_ OPERATOR CLASSES -~~~

Skills Gained

1. Enhanced
Understanding of

Securing
communication
between ESP32

modules.

2. Practical
Experience with s
Network Security:

Implementing best Identifying and
practices for secure rd Mmitigating potential Eamrs
code development. vulnerabilities.

Understanding and
amred 2Pplying encryption

Secure .
techniques.

Programming:

Awareness of
Securing loT common lol
devices and their Esmed Vulnerabilities and

communication. protection

Advanced Using debugging
3. Debugging and techniques for tools effectively for 4. Knowledge of loT
Troubleshooting: identifying and cybersecurity Security:
resolving issues. purposes.

methods.

Developing a
systematic

Using Serial Monitor Applying
and othertools for cybersecurity

Tackling complex
cybersecurity
challenges in

practical scenarios.

5. Hands-On
Experience with s
Security Tools:

6. Enhanced
ard Problem-Solving Eamrs
Skills:

approach to
problem-solving in
security contexts.

monitoring and principles to real-
testing. world projects.

| effectively addressed design
challenges, optimized our
system through testing, and
gained valuable skills in both
hardware and software
development.

Sources

e Course CEIS114 Project:
Overview and
Expectations

 Detailed module
guides

* |nstructional videos

e Live Lectures

* Various Professors
from DeVry University

DeVry

University

	Slide 1: CEIS114 Final Course Project
	Slide 2: Introduction
	Slide 3: Project Overview
	Slide 4: Objectives
	Slide 5: Components and Setup
	Slide 6: Implementation
	Slide 7: Expected Outcomes
	Slide 8: CEIS 114 Module 2
	Slide 9: Introduction to Module 2:
	Slide 10: ESP32
	Slide 11: ESP32 WiFi Scan
	Slide 12: CEIS 114 Module 3
	Slide 13: Introduction for Module 3:
	Slide 14: Circuit with working LEDs
	Slide 15: Code Commenting
	Slide 16: CEIS 114 Module 4
	Slide 17: Introduction to Module 4:
	Slide 18: The circuit with working LEDs
	Slide 19: Code in Wokwi
	Slide 20: CEIS 114 Module 5
	Slide 21: Introduction to Module 5:
	Slide 22: The circuit with working LEDs
	Slide 23: The code in Wokwi
	Slide 24: The Serial Monitor in Wokwi
	Slide 25: CEIS 114 Module 6
	Slide 26: Introduction to Module 6:
	Slide 27: The circuit with working LEDs and LCD display
	Slide 28: The code
	Slide 29: Serial Monitor
	Slide 30: CEIS 114 Module 7 Project- Option 2
	Slide 31: Introduction to Module 7:
	Slide 32: The circuit with working LEDs and LCD display (Building/Operation)
	Slide 33: The code
	Slide 34: Serial Monitor
	Slide 35: Challenges Faced
	Slide 36: Skills Gained
	Slide 37: Conclusion
	Slide 38: Sources

