Intrusion Detection,
Firewall, and
Network Analysis

« SEC290 Final Project
e Hector Acosta
e Course: SEC290

* Professor: Larry Burnette

Introduction to the Project

Objective:
This project covers the following key areas of network security
and defense:

olntrusion Analysis using tools like Wireshark and Snort.

oFirewall Configuration with iptables to secure network
traffic.

oLive Memory Analysis using tools like Volatility, Process
Hacker, and Process Monitor.

oApplying techniques such as:
= Time-based access control
= Blackhole routing
= Bogon filtering
= Stateful firewalls
= Dynamic NAT
= Brute force protection for SSH

Intrusion Analysis with
Wireshark

Objective:

Conduct protocol analysis and detect network attacks
using Wireshark.

Key Activities:

Basic Protocol Analysis:

Capturing and analyzing ICMP packets.

Identifying Type and Hexadecimal values in ICMP
packets.

Using Display Filters:

Filtering TCP and HTTP traffic.
Analyzing HTTP streams for clear-text vulnerabilities.

Common Attacks:

Performing Nmap Scans (Ping Scan, SYN Scan).
Identifying artifacts of recon activities in captured traffic.

Basic Attack Analysis:

Analyzing a pcap file to detect suspicious activities (e.g.,
TTL differences, flag settings).

Intrusion Analysis with Wireshark
Basic attack analysis

1. Look at captures no. 20 and 22. (You can use the “Go” link at the top of the Wireshark screen to quickly go to a specific
capture) Both packets are ICMP traffic but there are subtle differences between them. Compare the time-to-live and
data field sizes in the two packets. What differences do you see? Packets 20 and 22 are both ICMP echo requests, but
they differ in Time-To-Live (TTL) and Data field size. Packet 20 has a TTL of 128 and a data size of 74 bytes, while Packet
22 has a TTL of 64 and a data size of 98 bytes. The difference in TTL suggests they may come from different operating
systems (TTL 128 is typical for Windows, and TTL 64 for Linux/Unix). The larger data size in packet 22 might indicate
added information or padding. These variations could point to differences in system configurations or packet handling
along the network path.

2. Do a little Internet research to discover which operating systems use the specific values in their ping commands. What
operating system generated the echo request in capture 20? In packet capture 20, the ping request has a Time-To-Live
(TTL) of 128, which is a default value used by Windows operating systems like Windows 7, 10, or 11. This suggests that
the echo request in capture 20 likely came from a Windows computer.

3. Review packet no. 37 and beyond, what do you think is taking place here? In packet 37 and the following packets, it looks
like 192.168.25.200 is performing a port scan on 192.168.25.1. The source sends SYN packets (connection requests) to
different ports on the destination, trying to see if any ports are open. Each time, 192.168.25.1 responds with a RST
(Reset), which rejects the connection. This pattern sending SYNs and receiving RSTs indicates a TCP SYN scan, a common
method to check which ports on a computer are open or closed. This type of scan is often used to gather information
about a network.

4, Look at capture 22846. What is suspicious about the flag settings in this packet? In capture 22846, the packet has only
the FIN flag set, with no other flags like ACK or SYN. This is unusual because, normally, a FIN flag is used with an ACK to
politely close a connection. A packet with just the FIN flag, without any acknowledgment, can be suspicious. This type of
packet is sometimes used in FIN scans, where someone tests if a port is open in a way that might avoid detection.
Attackers sometimes use FIN scans to gather information without setting off alarms.

5. What is the IP address of the host being targeted? The IP address of the host being targeted in this capture is
192.168.25.1.

OpenSSL Analysis

Objective:

* Explore SSL/TLS analysis by creating and testing
encryption keys and certificates with OpenSSL.

* Key Activities:

* Creating SSL/TLS Keys and Certificates:
* Generated a self-signed certificate and RSA key
pair.
 Created two files: server.crt (certificate) and
server.pem (private key).
* Running an SSL Server:

 Setup alocal SSL server using the self-signed
certificate and key.

* Verified the connection using Firefox by accessing

https://localhost:4433 and accepting the self- ¥

signed certificate warning.

* Wireshark Capture and Decryption:
» Captured SSL traffic on the loopback interface.

* Added the private key in Wireshark to decrypt
the SSL traffic.

* Viewed the decrypted GET request in Wireshark.

https://localhost:4433

Creating and testing an SSL/TLS file Activities £ Wireshark ~

Ubuntu Web on WIN-6JNNGRLT6IL

Fri 15:51
*Loopback: lo

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

This slide shows the process of creating and

@EMEIRLG ASe2EF IS S QAQAQE

X]

'] Expression...

testing an SSL/TLS file using Wireshark

for network analysis. The image displays

the captured network packets during an

SSL/TLS connection.

* Tool: Wireshark

* Details: Network traffic captured on
port 443 (HTTPS) using SSL/TLS
encryption.

« Packet Content: Shows encrypted data
exchanged between the client and
server.

Why It Matters:

This helps in analyzing secure connections,

identifying vulnerabilities, and ensuring

encryption is properly implemented.

Source
22 103.307517700 ::1

» Secure Sockets Layer

QOE0 90 00 09 BO 02 00 DO 0O
6b 53 00 69 06 40 0O 0O
D@ 00 0D B0 00 01 00 0B
0O 00 0D B0 00 01 ca Ba
72 a9 80 18 02 00 00 71
de 50 8c 31 de 4b 17 03
5b 22 ef 14 15 73 9d de
d2 bd eb bl b3 1d de be
6d fc 5 3f 8c 59 aa 70
e7 96 79 3a cf 67 b5 ic

Frame (159 bytes)

Destination

28dl

B0 09 00 O 60 Oc
PO 00 0O OO 0P BO 0O PO
pO 00 0O A0 0P PO 00 BE
11 51 fe ab 76 cc 58 @a
B0 60 01 01 08 Pa Bc 31
03 00 44 6d ae 99 40 3b
bf a8 bl cc 45 50 d9 5f
1f 86 60 9c 5a c7 3c 15
ad Oc 69 cc 3b ad 14 5
a5 19 0a db 26 4F 4b

Decrypted SSL (18 bytes)

Protocol Lengtt Info
HTTP 158 GET / HTTP/1.0

» Frame 22: 159 bytes on wire (1272 bits), 159 bytes captured (1272 bits) on interface @

p Ethernet II, Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst: 00:00:00_00:00:00 (00:00:00:00:00:00)
8 » Internet Protocol Version 6, Src: ::1, Dst: ::1

» Transmission Control Protocel, Src Port: 51722, Dst Port: 4433, Seq: 559, Ack: 1126, Len: 73

_ -}
kS:i-@
Qo vX
r q 1
P1K Dm- @,
"

E] EP-_
kZ<
mo?Yepooode
yig &O0K

+

Creating and testing an
SSL/TLS file cont’d

This slide shows the detailed analysis of an
SSL/TLS stream in Wireshark. The image
displays the HTTP request and response
within the decrypted SSL/TLS stream.
* Tool: Wireshark
* Details:
e HTTP GET request captured
through SSL/TLS.
* Decrypted content shows the actual
text exchanged.
» SSL encryption details (cipher suite
and certificate information).
Why It Matters:
Analyzing SSL/TLS traffic helps verify
that encryption is working correctly

and detect potential vulnerabilities in
secure communications

Wireshark « Fri 15:52

wWireshark - Follow SSL Stream (tcp.stream eq 0) - Loopback: lo

GET / HTTPs1.0

HTTP/1.0 280 ok
Content-type: text/html

<HTML=><BODY BGCOLOR="#TTTTTfr">
<pre=>

s_server -www -cipher AESZ256-SHA -key server.pem -cert server.crt

Secure Renegotiation IS supported

Ciphers supported in s_server binary

TLSw1.3 :TLS_AES_ 256 GCM_SHA384 TLSw1.3 :TLS_CHACHAZG POLY1385 SHAZ2S56
TLSv1.3 :TLS_AES_128 GCM_SHAZ25G6 55Lwv3 AESZ256-5SHA

Ciphers common between hog; S55L end points:

AESZ256 - SHA

Signature Algorithms: ECDSA+SHAZSG:ECDSA+5HAZE4:ECDSA+SHAS1Z2 Ed25519:Ed448:RSA-PS5+5HA256: RSA-

PS5+5HA3EB4 : RSA-PSS+5SHAS12:: RSA-PS5+5SHAZ256 : RSA-PSS5+SHA384 tRSA-PS5+5HAS12 | RSA+5HAZSG : RSA

+5HA3B4 : RSA+SHAS12 : ECDSA+SHAZZ24 : ECDSA+SHAL : RSA+SHAZZ24 : RSA+SHAL : DSA+SHAZ224 : DSA+SHAL : DSA

+5HAZ256 : DSA+5SHAZE84 : DSA+SHAS1Z

Shared Signature Algorithms: ECDSA+SHA256:ECDSA+SHA384:ECDSA+5HAS12 :Ed25519: Ed448:RSA-PSS
+5HAZ256 : RSA-PS55+5HA3E4 | RSA-P55+5HAS12 : RSA-PS55+5HA256 : RSA-PS5+5HA384 : RSA-PS5+5HA512 : RSA
+5HAZ256 : RSA+5HA384 : RSA+5HAS12 : ECDSA+5HAZ 24 : ECDSA+SHAL : RSA+SHAZ2Z24 : RSA+SHAL : DSA+5HAZ24 : DSA

+5HAL : DSA+SHAZS5E6 : DSA+SHA3E4 : DSA+SHAS12
Supported Elliptic Groups: X25519:P-256:X448:P-521:P-384
Shared Elliptic groups: X25519:P-256:X448:P-521:P-384

No server certificate CA names sent
Mew, SS5Lwv3, Cipher is AES256-SHA
S5L-Session:
Protocol : TLSwv1.2
Cipher : AESZ256-SHA
Session-ID:
Session-ID-ctx: 910989080
Master-Key:

18EBYECCOEF4C18D125EET15A4F5949ETY753EBSCDA44564A0C68T7408A4046A5B45DACOOEB2E819FDASBE3DBBEA41EESCE

TF

PSK identity: MNone

PSK identity hint: MNone

SRP username: MNone

Start Time: 1731714174

Timeout 1 7208 (sec)

Verify return code: @ (ok)
Extended master secret: yes
@ items in the session cache
8 client connects (SSL_connect()})

Packet 23. 1 client pkt, I senver pkt, 1 tum. Click to select.

Entire conversation (2,114 bytes) -

Find:

Filter Out This Stream Print Save as... Back A Close

Show and save data as | ASCII -

Find Next

EiHelp

Intrusion Detection with
Snort

Objective:

*Explore network intrusion detection using Snort and
analyze alerts generated by different types of network
scans.

*Key Activities:
*Testing Snort Rules:
*Deployed Snort on the Security Onion IDS machine.
*Generated network traffic using Nmap scans:
*XMAS Scan to trigger Snort alerts.
*Viewed alerts in Sguil Dashboard and analyzed the
details of flagged packets.

*Creating Custom Snort Rules:

*Added a rule to detect ICMP traffic to the local.rules
file.

*Verified the rule by generating ping traffic to the
OWASP-BWA machine.

*Observed the alerts in the Sguil dashboard.

Testing Snort rules

This slide demonstrates the process of
testing Snort rules for intrusion detection.
The image shows a detected alert with
detailed information.
* Tool: Snort
* Details:
 SourcelP:192.168.177.100
* DestinationIP: 192.168.177.7
* Ports: Source port 52751,
Destination port 22 (SSH)
» Alert: Snort detected suspicious
activity (XMAS scan).
Why It Matters:
Testing Snort rules helps identify
malicious activities, such as port scans,
and ensures that the intrusion
detection system (IDS) is configured

properly.

ids-enp0s10f0_15084

Eile

Sensor Name: ids-enp0s 1070
Mmestamp: 2024-11-19 00:27:12
Connection 1D: .ids-enp0s10t0_15084

Src IP: 192.168.177.100
D=t 1P: 192.168.177.7
Src Port: 52751

Dst Port: 22

Mo Data Sent.

Search | Abort
Debug Messages

Close

192.168.177.7 and port 52751 and port 22 and proto 6) or (vian and host 192.168.177.100 and host

192.168.177.7 and port 52751 and port 22 and proto)
Receiving raw file from sensor.
Finished.

Testing Snort rules cont’d

This slide shows the detailed analysis of
network traffic using Wireshark after
Snort has detected an alert. The image
displays the captured TCP packets with
flags set, typical of an XMAS scan.
* Tool: Wireshark
* Details:
* Captured TCP traffic with flags:
URG, PSH, FIN.
* Source: 192.168.177.100
« Destination: 192.168.177.7
* Snortrule triggered by the
unusual combination of flags.
Why It Matters:
This analysis confirms Snort's
detection capabilities and helps
understand the nature of the
suspicious traffic, aiding in securing
the network from potential attacks.

File Action Media Clipboard View Help
S O@O@O up Lol

Applications ~ Places Wireshark Tu

SGUIL-0.9.0 - Connected To localhost

*enp0s10fo - O

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

AN @ERRE Qex2EF I FAaaaE

([tep [X]

" Protocol Lengtt Info
68 52751 - 22 [FIN, PSH, URG] Segq=1 Win=1024 Urg=@ Len=@

~| Expression...

Destination
192.168.177.7

No. Time 'Source
933 209.856662900 192.168.177.1068

Sequence number: 1
[Next seguence number: 1
Acknowledgment number: @
0181 = Header Length: 20 bytes (5)

relative sequence number
q
(relative sequence number)]

Window size value: 1024
[Calculated window size: 10824]
[Window s5ize scaling factor: -1 (unknown)]
Checksum: @xf357 [unverified]
[Checksum Status: Unverified]
Urgent pointer: @
b [Timestamps]

OEOY B0 15 5d ©@ ba 86 @8 15 5d 0 ba 89 @8 ©@ 45 @0] - T E-
Opi0 B0 28 b cB 00 B0 27 @6 9 4a cO a8 bl 64 cO a8 (o' -3 de
0020 bl B7 ce OF 00 16 19 81 ea fF 0D 00 0D 00 50 29 o P)
0E30 04 @0 5 57 @0 00 08 00 6O 00 oWl

O ? Flags (3 bits) (ip.flags), 2 bytes Packets: 3451 : Displayed: 2000 (58.0%) - Dropped: 0 (0.0%) Profile: Defaul

Creating Snort rules

This slide illustrates the process of
creating custom Snort rules to detect
specific network activities. The image
shows the Sguil dashboard displaying
alerts triggered by Snort.
* Tool: Snort and Sguil
* Details:
* Alert: ICMP traffic detected (ping
scan).
* SourceIP: 192.168.177.100
* DestinationIP: 192.168.177.7
* Rule configured to identify
suspicious network behavior.
Why It Matters:
Creating custom Snort rules allows
for tailored detection of specific
threats, enhancing the effectiveness
of intrusion detection systems.

3!5 Security Onion IDS on WIN-6JNNGRLT6IL - Virtual Machine Connection

File Action Media

a @0 un»

Squil.tk

Clipboard View Help

Applications ~ Places

Tue 0053 W) O |

SGUIL-0.9.0 - Connected To localhost

Eile Query Reports Sound: Off ServerName: localhost UserName: infosec UserlD: 2

RealTime Events | Escalated Events |

2024-11-19 00:53:57 GMT

o x

ST CNT | Sensor Date/Timks Src IP SPort | DstIP DPort | Pr | Event Message
RT 2000 ids-enpOs.. 4.15084 2024-11-19 00:27:12 192.168.177.100 52751 192.168.177.7 22 6 Nmap XMAS Tree Scan
RT 83 ids-enps.. 4.17084 2024-11-19 00:52:35 192.168.177.100 192.168.177.47 1 GPLICMP_INFO PING *NIX

- — [+ Show Packet Data ¥ Show Rule
IP Resolution] Agent Status W Snort Stansncsw System Msgs] Us -
alert tcp any any -> SHOME_NET any (msg:"Nmap XMAS Tree Scan”; flags:FPU; sid:1000007; rev:1;)
[Reverse DNS v Enable External DNS /nsmiserver_data/securityonion/rules/ids-enp0s10f0/downloaded.rules: Line 27362
Src IP: 45
Source IP Dest IP Ver HL TOS len ID Flags Offset TTL ChkSum
Sichee 192168.177.100 (1921681777 4 [5 o 40 a7z 0 o 39 [sas18
Dst IP: UAPRSF
Dst Name: Source Dest RRR CSSY I
" Pot Pot 1 0GKHTNN Seq # Ack # Offset Res Window Urp ChkSum
Whois Query: * None SrcIP DstIP
52751 |22 X[X . (X 427944703 0 5 0 1024 |0 62807
None. None.

Creating Snort rules cont’d

This slide shows the detailed packet analysis
in Wireshark after applying custom Snort
rules. The image highlights ICMP traffic
that has been captured and flagged as an
alert.

* Tool: Wireshark

* Details:

Source IP: 192.168.177.100
 DestinationIP: 192.168.177.7
Protocol: ICMP

Detailed breakdown of the packet,
including headers and flags.

Why It Matters:

This analysis helps validate that Snort
rules are functioning correctly and
provides deeper insight into the
network traffic being monitored for
potential threats.

*enp0s10f0

File Edit View Go Capture Analyze StaﬂsEEs Telephony Wireless Tools Help

An miRE QesZTFISEARAQAQE
(A icmg X]
No. Time Destination Protocol Lengtt Info

19§ Destinatlun unreachable Port unreachable

*| Expression...

+

» Frame 3: 109 hytes on wire
b Ethernet II, Src: Microsof_00:ba:09 (06:15:5d:00:ba:09),

(472 bits),

w Internet Protocol Version 4, Src: 192.168.177.100, Dst: 102.168.177.7

0010

0108 = Version: 4

.vv. 8181 = Header Length: 28 bytes (5)
b Differentiated Services Field: Oxc® (DSCP: CS6, ECN: Mot-ECT)

Total Length: 95

Identification: OxdcBd (56461)
5 Flags: OGxe000

Time to live: 64
Protocol: ICMP (1)

Header checksum: @xb993 [validation disabled]

89 15 5d 00 ba 05 00 15
08 5f dc 8d R 40 o1
b @7 03 03 e0 fa 00 09
4900 49 11 o8 ba cd a8
99 35 00 2f 68 3d c4 ca
99 00 01 32 06 75 62 75
83 Ge 74 70 03 6F 72 67

50 80 ba B9 03 00 45 c@
b9 93 c@ a8 bl 64 cO ad
00 00 45 00 00 43 6e 32
b1 67 c@ a8 bl 64 dO Ge
01 00 06 01 00 60 oo 0o
Ge 74 75 04 70 6f 6F Gc
00 00 01 60 01

O 7 Flags (3 bits) (ip.flaas), 2 bytes

E.

R
E Cn2

éI@ dn

5 /h=
2:ubu ntu-pool
ntp-org

109 bytes captured (872 DltS} on 1nterface @
Dst: Microsof_G@:ba:06 (00:15:5d:00:ba:06)

Packets: 649 - Displayed: 404 {62.2%) - Dropped: 0 (0.0%)

Profile: Default

Live Memory Analysis

Objective:

*Perform live memory analysis on Linux and Windows systems
using tools like Volatility, Process Hacker, and Process
Monitor.

*Key Activities:

*Linux Processes Analysis:

Ildentified running processes with commands like ps and
1sof.

*Examined open network connections and kernel
modules.
*Process Hacker:

*Used Process Hacker on the Malware VM to analyze
running processes.

ldentified parent-child relationships to detect potential
malicious activity.

*Process Monitor:
*Captured and filtered registry changes made by Notepad.

Identified where font and font size settings are stored in
the Windows Registry.

Linux Processes

This slide shows how to analyze Linux processes
using the Isof command. The image displays
processes actively using TCP connections. Key
information includes:

e COMMAND: Process name (e.g., sshd, apache?2).

*PID: Process ID.

*USER: User running the process.

*FD: File descriptor.

*TYPE: Connection type (IPv4/IPvé6).

*NODE NAME: Port or service (e.g., http, tcp,
55000).

Why It Matters:

This helps identify active services, detect
unauthorized connections, and secure the system
by closing unnecessary ports.

root@ubuntu: fvarflog

File Edit View Search Terminal Help
[1] 3320
root@ubuntu: /var/log# lsof -i TCP
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE
systemd-r 374 systemd-resolve 13u IPv4 28565 ote TCP
(LISTEN)
postgres 718
esql (LISTEN)
sshd 975 root 3u IPv4 38624 0te TCP
sshd 975 root 4u IPv6 38626 ote TCP
mysqld 1124 mysql IPv4 37229 ete TCP
(LISTEN)
apache2 1176 root IPv6 36051 0te TCP
apache2 2967 -data IPv6 36651 ete TCP
apache2 2969 -data IPv6 36051 ete TCP
apache2 2970 -data IPv6 36651 ete TCP
apache2 2971 -data IPv6 36051 ete TCP
apache2 2972 -data IPv6 36651 ete TCP
cupsd 2984 root 6u IPvé 54358 0té TCP
p (LISTEN)
cupsd 2984 root IPv4
ISTEN)
ncat 3320 root IPv6
3320 root 6u IPv4

postgres 7u IPv4 34764 ote TCP

54359 ote TCP

56536 ote TCP
56537 ote TCP

NAME
localhost:domain

localhost:postgr

*®

*

160000 (LISTEN)
160000 (LISTEN)

localhost:mysqgl

*®
*®
*®
*®
*®
*®

thttp (LISTEN)
thttp (LISTEN)
thttp (LISTEN)
thttp (LISTEN)
thttp (LISTEN)
thttp (LISTEN)

ip6-localhost:ip

localhost:ipp (L

*®

*®

155000 (LISTEN)
155000 (LISTEN)

Process Hacker

This slide shows the Process Hacker tool,
a powerful utility for analyzing system
processes in detail. The window displays
properties of the System Idle Process.
eTool: Process Hacker

Details:

Process: System ldle Process
Information: Command line, current
directory, parent process, protection
settings

Tabs: Statistics, Performance, Threads,
Memory, Handles

Why It Matters:

Process Hacker is essential for monitoring
and managing processes on a system. It
helps identify suspicious activity,
malware, or anomalies by examining
process details and their relationships.

' System Idle Process (0) Properties

SRR

General | Statistics | Performance | Threads | Token Modules'Memory Environment | Handles | Disk and Network | Comment

File

[|
| N/A

Version: N/A

Image file name:;
N/A

Process
Command line:

Current directory:
Started:
PEB address:

Parent:

Mitigation policies:

Protection: N/A

System Idle Process

N/A
N/A
N/A
N/A
Non-existent process (0)

N/A

Image type: N/A

Details

Permissions l ‘ Terminate

Close

Il

’ﬁ-’ Process Monttor - Sysinternals; wwnw.sysintemals.com

Process Monitor

File Edit Event Fiter Tooks Options Help

=0k

This slide shows Process Monitor, a real-time monitoring dl XXl
tool used for tracking system activity, particularly registry, Jam bl Resul Deta :
file system, and process/thread operations. f. RegSetValue HKCUNSoftwarelMicrosoftiNotepadifOnentafion SUGCESS Type:REG_DWORD, Length:4,Data 0
eTool: Process Monitor RegSetValue HKCUSoftwareMcrosoftiNotepadifWeight SUCCESS Type: REG_DWORD, Lengtt 4, Data: 400
e Details: » RegoetValue HKCUSoftwarelMicrosoftiNotepadifitaic SUCCESS Type: REG_DWORD, Length: 4 Data: 0
.) e . i RegsetVaiie HKCUSoftwareMicrosoftiNotepadifUnderine SUCCESS Type: REG_DWORD, Length 4 Data: 0
* Operation: Registry modifications (RegSetValue) RRecsetvate HKCUSotvaeicosotNotepadStikeOu SUCCESS Type:REG_DWORD, Lengt4 Dz 0
* Path: Locations in the Windows Registry related to I ReqSetValue HKCU\SoftwarelMicrosoftNotepadifCharSet SUCCESS Type:REG_DWORD), Length:4 Data: 255
Notepad settings I RenSetValue HKCU\SoftwarelMicrosoftNotspacfOutPrecision SUCCESS Type: REG_DWORD, Lengtt 4 Data:3
e Result: SUCCESS indicates the operation was It RenSetValue HKCUISoftwarelMicrosoftNotspacfClipPrecision SUCCESS Type: REG DWORD, Length: 4 Data:2
completed successfully R RegSelVae HKCU\SofMare\M\cmsof Notepad\lf(]ualw SUCCESS Type: REG_DIWORD, Length: 4 Data: 1
e t

) RegSetValue SUCCESS

e Detail: Shows the data written or modified in the

Type: REG_DWORD, Length 4 Data: 18

registry RegSelVaiue HKCU\Soﬂware\Mmrosoﬂ\Nolepad\lfFaceNarne SUCCESS Type: REG_SZ Length: 12, Data: Roman
I RegSefValue HKCUSoftwarelMcrosoftNotepadiPoitSize SUCCESS Type: REG_DWORD, Length:4 Data: 260
Why It Matters: , BRegSelvae HCUSotareMionsoolepadlindonposy SUCCESS Tipe: REG DIWORD, Lenghr 4 Dt 42949’
Process Monitor helps analyze system changes, diagnose | halde HCLShaeNoslaliioPs SUESS e DIRD o 1
issues, and identify malicious behavior by tracking ' ar o e x__oco awnoo i
registry edits and file system activities in real-time. It is
Chaunna TN A 100 £17 avants N ATEOA Hedbo] o bl e

valuable for troubleshooting and forensic investigations.

Firewall Configuration with
iptables

Objective:

*Configure and analyze firewall rules using iptables to secure
network traffic.

*Key Activities:

*Time-Based Access:

*Configured firewall rules to allow SSH access to the DMZ
machine only during specific hours (8 AM to 4 PM CST,
Monday to Friday).

*Verified access control by adjusting the system clock.

*Blackhole Routing:
*Created a blackhole route to drop packets to a specific IP
address to block unwanted traffic.

*Bogon Filtering:
*Blocked packets from invalid IP address ranges (bogons)
to prevent malicious activity.

Stateful Firewall:

*Implemented a stateful firewall to allow only established
and new connections.

*Dropped invalid packets to enhance security.

Time-based Access

This slide demonstrates configuring time-based
access rules for controlling network traffic based
on specific time windows.

*Tool: iptables on the Firewall Machine

e Details:

e Shows the routing table and network
configuration on the DMZ Machine.

e Time-based access allows SSH connections to
the DMZ Machine only during specific times
(e.g., 8:00 AM to 4:00 PM CST).

e Ensures traffic is forwarded according to
defined time constraints for security.

Why It Matters:

Time-based access limits exposure to potential

attacks by only allowing connections during

authorized time windows, reducing the risk of
unauthorized access during off-hours.

32' DMZ Machine on WIN-6JNMN6RLT6IL - Virtual Machine Connecti...

File Action Media
@O ump

rootBowaspbwa:™# netstat -rn
Kernel IP routing table
Destination Gateway Genmask Flags M55
172.16.0.0 0.0.0.0 255.255.255.0 U 0
rootBowaspbwa:™# netstat add —wet 192.168.177.0 netmask 255
.10

fictive Internet connections (w-so =ervers)
Proto Recv—{] Send-) Local Address

lU=zer Inode

rootBowaspbwa:™# netstat -rn

Kernel IP routing table

Destination Gateway Genmask Flags M55
172.16.0.0 0.0.0.0 255.255.255.0 U 0
rootBowaspbwa:™# netstat add —wet 192.168.177.0 netmask 255
.10

fictive Internet connections (w-so =ervers)
Proto Recv—{] Send-) Local Address

lU=zer Inode
rootBowaspbwa:™# netstat -rn
Kernel IP routing table
Destination Gateway
172.16.0.0 0.0.0.0

Clipboard View Help

Foreign Address

Foreign Address

Genmask Flags M55
255.255.255.0 U 0

Window
0
.255.255.

Window
0
.255.255.

Window
0

rootBowaspbwa:™# route add —met 192.168.177.0 netmask 255.255.255.0

10

rootBowaspbwa:™# netstat -rn
Kernel IP routing table
Destination Gateway
192.168.177.0 172.16.0.10
172.16.0.0 0.0.0.0
rootBowaspbwa: " #

Genmask Flags M3
255.255.255.0 UG
255.255.255.0 U

Status: Running

irtt Iface
0 ethd
0 gu 172.16.

State

irtt Iface
0 ethd
0 gu 172.16.

State

irtt Iface
0 ethd
gu 172.16.0.

irtt Iface
0 ethd
0 ethd

=)

Time-based Access

This slide shows a successful ping test to verify
time-based access rules.

*Tool: ping command on the Ubuntu Web Machine
e Details:

e The ping command successfully sends and

student@ubuntu:~$ ping -c 3 172.16.0.50
PING 172.16.0.50 (172.16.0.50) 56(84) bytes of data.

receives packets from 172.16.0.50. 64 bytes from 172.16.0.50: icmp _seq=1 ttl=63 time=4.76 ms

e Indicates that the time-based access rules allow 20 i) B e el S S
network traffic during the permitted window. 64 bytes from 172.16.0.50: icmp seq=3 ttl=63 time=5.23 ns

e 3 packets were transmitted and received with 0% --- 172.16.0.50 ping statistics ---
packet loss, confirming connectivity. 3 packets transmitted, 3 received, 8% packet loss, time 2002ms

rtt min/avg/max/mdev = 4.767/5.131/5.392/0.271 ms
student@ubuntu:~$

Why It Matters:

Verifying connectivity helps ensure that the time-
based access rules are functioning correctly. It
demonstrates that access is permitted within the
specified time frame, enhancing network security
and controlled access.

Time-based Access

This slide demonstrates successful SSH access

during the allowed time window.

eTool: SSH connection from the Ubuntu Web

Machine to the DMZ Machine at 172.16.0.50.

e Details:

e The SSH session connects successfully,
prompting for a password.

e The login is authenticated, and the terminal
displays the OWASP Broken Web Apps VM
console.

e Shows administrative access to manage or
configure the DMZ machine.

Why It Matters:

This confirms that the time-based access rule

allows SSH connections only during the specified

time frame. It helps ensure secure remote access
to critical machines while limiting exposure to
unauthorized users outside the allowed hours.

root@owaspbwa: ~

File Edit View Search Terminal Help

student@ubuntu:~$ ssh root@172.16.0.50

root@l72.16.0.50's password:

You have new mail.

Last login: Sat Dec 7 08:56:43 2024 from 192.168.177.100

Welcome to the OWASP Broken Web Apps VM

11l This VM has many serious security issues. We strongly recommend that you run
it only on the "host only" or "NAT" network in the VM settings !!!

Vou can access the web apps at http://172.16.0.58/
Ubuntu Software

You can administer / configure this machine through the console here, by SSHing
to 172.16.0.50, via Samba at \\172.16.0.50\, or via phpmyadmin at
http://172.16.0.50/phpmyadmin.

In all these cases, you can use username "root" and password "owaspbwa".

root@owaspbwa:~-# l

Conclusion and Key Takeaways

Throughout this course, | gained valuable hands-on experience
with essential cybersecurity tools and techniques. In Module 2, |
learned to capture and analyze network traffic using Wireshark,
which allowed me to identify different types of attacks. Module
3 focused on SSL/TLS encryption using OpenSSL, where |
created and tested encryption keys and certificates and
decrypted traffic in Wireshark. In Module 4, | explored Snort for
intrusion detection, analyzed alerts generated by different
scans, and created custom rules to detect specific traffic.
Module 5 provided insights into live memory analysis using
tools like Volatility, Process Hacker, and Process Monitor to
identify running processes, memory dumps, and registry
changes. Finally, in Module 6, | configured firewall rules with
iptables to implement time-based access, blackhole routing,
bogon filtering, and stateful firewall configurations. These
modules have equipped me with practical skills for network
defense, intrusion detection, and system analysis, laying a solid
foundation for real-world cybersecurity roles and further
certification.

Challenges Faced

Completing this project presented several challenges that
tested my problem-solving and technical skills. One major
challenge was navigating the different virtual machines and
ensuring they were properly configured for each module.
Switching between environments like the Security Onion IDS,
Ubuntu Web, and Malware VM required careful attention to
detail and time management. Additionally, understanding and
executing complex commands in tools like Wireshark,
OpenSSL, Snort, and iptables required thorough research and
practice. Troubleshooting errors, such as failed SSL connections
or misconfigured firewall rules, was time-consuming and
required patience and persistence. Another challenge was
managing the volume of information and remembering the
correct steps and commands for each task. Despite these
obstacles, overcoming these challenges provided me with
valuable hands-on experience and a deeper understanding of
cybersecurity tools and techniques, preparing me for real-world
applications.

Career Skills Obtained

Through this course, | have gained essential skills that are valuable for a successful
career in cybersecurlty These include:

* Network Traffic Analysis: Proficiency in using Wireshark to capture, analyze,
and interpret network traffic for threat detection and performance monitoring.

* Intrusion Detection and Prevention: Experience in deploying and configuring
Snort to identify and respond to network-based attacks.

* Cryptographic Analysis: Understanding of SSL/TLS protocols and the ability
to create, test, and decrypt encrypted communications using OpenSSL.

* Live Memory Forensics: Skills in analyzing system memory using tools like
Volatility, Process Hacker, and Process Monitor to identify malicious
processes and anomalies.

* Firewall Configuration: Competence in securing networks through iptables by
implementing access controls, blackhole routing, and stateful inspection.

. Problem-Solving and Troubleshooting: Ability to troubleshoot complex
configurations, identify errors, and resolve issues effectively across multiple
environments.

These skills are foundational for roles such as Security Analyst, Network
Administrator, Incident Responder, and Forensic Investigator, providing the
technical expertise needed to protect and defend digital assets.

References

DeVry University SEC290 Course Materials
Wireshark Documentation

OpenSSL User Guide

Snort User Manual

Process Hacker Documentation

Process Monitor Guide

Volatility Framework Documentation

iptables Manual and Linux Kernel Documentation

	Slide 1: Intrusion Detection, Firewall, and Network Analysis
	Slide 2: Introduction to the Project
	Slide 3: Intrusion Analysis with Wireshark
	Slide 4: Intrusion Analysis with Wireshark Basic attack analysis
	Slide 5: OpenSSL Analysis
	Slide 6: Creating and testing an SSL/TLS file
	Slide 7: Creating and testing an SSL/TLS file cont’d
	Slide 8: Intrusion Detection with Snort
	Slide 9: Testing Snort rules
	Slide 10: Testing Snort rules cont’d
	Slide 11: Creating Snort rules
	Slide 12: Creating Snort rules cont’d
	Slide 13: Live Memory Analysis
	Slide 14: Linux Processes
	Slide 15: Process Hacker
	Slide 16: Process Monitor
	Slide 17: Firewall Configuration with iptables
	Slide 18: Time-based Access
	Slide 19: Time-based Access
	Slide 20
	Slide 21: Conclusion and Key Takeaways
	Slide 22: Challenges Faced
	Slide 23: Career Skills Obtained
	Slide 24: References

