
Intrusion Detection, 
Firewall, and 
Network Analysis

• SEC290 Final Project

• Hector Acosta

• Course: SEC290

• Professor: Larry Burnette



Introduction to the Project

Objective:

This project covers the following key areas of network security 
and defense:

oIntrusion Analysis using tools like Wireshark and Snort.

oFirewall Configuration with iptables to secure network 
traffic.

oLive Memory Analysis using tools like Volatility, Process 
Hacker, and Process Monitor.

oApplying techniques such as:

▪ Time-based access control

▪ Blackhole routing

▪ Bogon filtering

▪ Stateful firewalls

▪ Dynamic NAT

▪ Brute force protection for SSH



Intrusion Analysis with 
Wireshark
Objective:

Conduct protocol analysis and detect network attacks 
using Wireshark.

• Key Activities:

• Basic Protocol Analysis:
• Capturing and analyzing ICMP packets.

• Identifying Type and Hexadecimal values in ICMP 
packets.

• Using Display Filters:
• Filtering TCP and HTTP traffic.

• Analyzing HTTP streams for clear-text vulnerabilities.

• Common Attacks:

• Performing Nmap Scans (Ping Scan, SYN Scan).

• Identifying artifacts of recon activities in captured traffic.

• Basic Attack Analysis:

• Analyzing a pcap file to detect suspicious activities (e.g., 
TTL differences, flag settings).



Intrusion Analysis with Wireshark
Basic attack analysis
1. Look at captures no. 20 and 22. (You can use the “Go” link at the top of the Wireshark screen to quickly go to a specific 

capture) Both packets are ICMP traffic but there are subtle differences between them. Compare the time-to-live and 
data field sizes in the two packets. What differences do you see? Packets 20 and 22 are both ICMP echo requests, but 
they differ in Time-To-Live (TTL) and Data field size. Packet 20 has a TTL of 128 and a data size of 74 bytes, while Packet 
22 has a TTL of 64 and a data size of 98 bytes. The difference in TTL suggests they may come from different operating 
systems (TTL 128 is typical for Windows, and TTL 64 for Linux/Unix). The larger data size in packet 22 might indicate 
added information or padding. These variations could point to differences in system configurations or packet handling 
along the network path.

2. Do a little Internet research to discover which operating systems use the specific values in their ping commands. What 
operating system generated the echo request in capture 20? In packet capture 20, the ping request has a Time-To-Live 
(TTL) of 128, which is a default value used by Windows operating systems like Windows 7, 10, or 11. This suggests that 
the echo request in capture 20 likely came from a Windows computer.

3. Review packet no. 37 and beyond, what do you think is taking place here? In packet 37 and the following packets, it looks 
like 192.168.25.200 is performing a port scan on 192.168.25.1. The source sends SYN packets (connection requests) to 
different ports on the destination, trying to see if any ports are open. Each time, 192.168.25.1 responds with a RST 
(Reset), which rejects the connection. This pattern sending SYNs and receiving RSTs indicates a TCP SYN scan, a common 
method to check which ports on a computer are open or closed. This type of scan is often used to gather information 
about a network.

4. Look at capture 22846. What is suspicious about the flag settings in this packet? In capture 22846, the packet has only 
the FIN flag set, with no other flags like ACK or SYN. This is unusual because, normally, a FIN flag is used with an ACK to 
politely close a connection. A packet with just the FIN flag, without any acknowledgment, can be suspicious. This type of 
packet is sometimes used in FIN scans, where someone tests if a port is open in a way that might avoid detection. 
Attackers sometimes use FIN scans to gather information without setting off alarms.

5. What is the IP address of the host being targeted? The IP address of the host being targeted in this capture is 
192.168.25.1.



OpenSSL Analysis
Objective:

• Explore SSL/TLS analysis by creating and testing 
encryption keys and certificates with OpenSSL.

• Key Activities:

• Creating SSL/TLS Keys and Certificates:

• Generated a self-signed certificate and RSA key 
pair.

• Created two files: server.crt (certificate) and 
server.pem (private key).

• Running an SSL Server:

• Set up a local SSL server using the self-signed 
certificate and key.

• Verified the connection using Firefox by accessing 
https://localhost:4433 and accepting the self-
signed certificate warning.

• Wireshark Capture and Decryption:

• Captured SSL traffic on the loopback interface.

• Added the private key in Wireshark to decrypt 
the SSL traffic.

• Viewed the decrypted GET request in Wireshark.

https://localhost:4433


Creating and testing an SSL/TLS file

This slide shows the process of creating and 
testing an SSL/TLS file using Wireshark 
for network analysis. The image displays 
the captured network packets during an 
SSL/TLS connection.
• Tool: Wireshark
• Details: Network traffic captured on 

port 443 (HTTPS) using SSL/TLS 
encryption.

• Packet Content: Shows encrypted data 
exchanged between the client and 
server.

Why It Matters:
This helps in analyzing secure connections, 
identifying vulnerabilities, and ensuring 
encryption is properly implemented.



Creating and testing an 
SSL/TLS file cont’d
This slide shows the detailed analysis of an 
SSL/TLS stream in Wireshark. The image 
displays the HTTP request and response 
within the decrypted SSL/TLS stream.
• Tool: Wireshark
• Details:

• HTTP GET request captured 
through SSL/TLS.

• Decrypted content shows the actual 
text exchanged.

• SSL encryption details (cipher suite 
and certificate information).

Why It Matters:
Analyzing SSL/TLS traffic helps verify 
that encryption is working correctly 
and detect potential vulnerabilities in 
secure communications.



Intrusion Detection with 
Snort
Objective:

•Explore network intrusion detection using Snort and 
analyze alerts generated by different types of network 
scans.

•Key Activities:

•Testing Snort Rules:
•Deployed Snort on the Security Onion IDS machine.

•Generated network traffic using Nmap scans:
•XMAS Scan to trigger Snort alerts.

•Viewed alerts in Sguil Dashboard and analyzed the 
details of flagged packets.

•Creating Custom Snort Rules:
•Added a rule to detect ICMP traffic to the local.rules 
file.
•Verified the rule by generating ping traffic to the 
OWASP-BWA machine.
•Observed the alerts in the Sguil dashboard.



Testing Snort rules
This slide demonstrates the process of 
testing Snort rules for intrusion detection. 
The image shows a detected alert with 
detailed information.
• Tool: Snort
• Details:

• Source IP: 192.168.177.100
• Destination IP: 192.168.177.7
• Ports: Source port 52751, 

Destination port 22 (SSH)
• Alert: Snort detected suspicious 

activity (XMAS scan).
Why It Matters:
Testing Snort rules helps identify 
malicious activities, such as port scans, 
and ensures that the intrusion 
detection system (IDS) is configured 
properly.



Testing Snort rules cont’d
This slide shows the detailed analysis of 
network traffic using Wireshark after 
Snort has detected an alert. The image 
displays the captured TCP packets with 
flags set, typical of an XMAS scan.
• Tool: Wireshark
• Details:

• Captured TCP traffic with flags: 
URG, PSH, FIN.

• Source: 192.168.177.100
• Destination: 192.168.177.7
• Snort rule triggered by the 

unusual combination of flags.
Why It Matters:
This analysis confirms Snort's 
detection capabilities and helps 
understand the nature of the 
suspicious traffic, aiding in securing 
the network from potential attacks.



Creating Snort rules
This slide illustrates the process of 
creating custom Snort rules to detect 
specific network activities. The image 
shows the Sguil dashboard displaying 
alerts triggered by Snort.
• Tool: Snort and Sguil
• Details:

• Alert: ICMP traffic detected (ping 
scan).

• Source IP: 192.168.177.100
• Destination IP: 192.168.177.7
• Rule configured to identify 

suspicious network behavior.
Why It Matters:
Creating custom Snort rules allows 
for tailored detection of specific 
threats, enhancing the effectiveness 
of intrusion detection systems.



Creating Snort rules cont’d

This slide shows the detailed packet analysis 
in Wireshark after applying custom Snort 
rules. The image highlights ICMP traffic 
that has been captured and flagged as an 
alert.
• Tool: Wireshark
• Details:

• Source IP: 192.168.177.100
• Destination IP: 192.168.177.7
• Protocol: ICMP
• Detailed breakdown of the packet, 

including headers and flags.
Why It Matters:
This analysis helps validate that Snort 
rules are functioning correctly and 
provides deeper insight into the 
network traffic being monitored for 
potential threats.



Live Memory Analysis

Objective:

•Perform live memory analysis on Linux and Windows systems 
using tools like Volatility, Process Hacker, and Process 
Monitor.

•Key Activities:

•Linux Processes Analysis:
•Identified running processes with commands like ps and 
lsof.

•Examined open network connections and kernel 
modules.

•Process Hacker:

•Used Process Hacker on the Malware VM to analyze 
running processes.

•Identified parent-child relationships to detect potential 
malicious activity.

•Process Monitor:

•Captured and filtered registry changes made by Notepad.

•Identified where font and font size settings are stored in 
the Windows Registry.



Linux Processes

This slide shows how to analyze Linux processes 
using the lsof command. The image displays 
processes actively using TCP connections. Key 
information includes:
•COMMAND: Process name (e.g., sshd, apache2).
•PID: Process ID.
•USER: User running the process.
•FD: File descriptor.
•TYPE: Connection type (IPv4/IPv6).
•NODE NAME: Port or service (e.g., http, tcp, 
55000).
Why It Matters:
This helps identify active services, detect 
unauthorized connections, and secure the system 
by closing unnecessary ports.



Process Hacker
This slide shows the Process Hacker tool, 
a powerful utility for analyzing system 
processes in detail. The window displays 
properties of the System Idle Process.
•Tool: Process Hacker
• Details:
• Process: System Idle Process
• Information: Command line, current 

directory, parent process, protection 
settings

• Tabs: Statistics, Performance, Threads, 
Memory, Handles

Why It Matters:
Process Hacker is essential for monitoring 
and managing processes on a system. It 
helps identify suspicious activity, 
malware, or anomalies by examining 
process details and their relationships.



Process Monitor
This slide shows Process Monitor, a real-time monitoring 
tool used for tracking system activity, particularly registry, 
file system, and process/thread operations.
•Tool: Process Monitor
• Details:
• Operation: Registry modifications (RegSetValue)
• Path: Locations in the Windows Registry related to 

Notepad settings
• Result: SUCCESS indicates the operation was 

completed successfully
• Detail: Shows the data written or modified in the 

registry
Why It Matters:
Process Monitor helps analyze system changes, diagnose 
issues, and identify malicious behavior by tracking 
registry edits and file system activities in real-time. It is 
valuable for troubleshooting and forensic investigations.



Firewall Configuration with 
iptables
Objective:

•Configure and analyze firewall rules using iptables to secure 
network traffic.

•Key Activities:

•Time-Based Access:

•Configured firewall rules to allow SSH access to the DMZ 
machine only during specific hours (8 AM to 4 PM CST, 
Monday to Friday).
•Verified access control by adjusting the system clock.

•Blackhole Routing:

•Created a blackhole route to drop packets to a specific IP 
address to block unwanted traffic.

•Bogon Filtering:

•Blocked packets from invalid IP address ranges (bogons) 
to prevent malicious activity.

•Stateful Firewall:

•Implemented a stateful firewall to allow only established 
and new connections.

•Dropped invalid packets to enhance security.



Time-based Access
This slide demonstrates configuring time-based 
access rules for controlling network traffic based 
on specific time windows.
•Tool: iptables on the Firewall Machine
• Details:
• Shows the routing table and network 

configuration on the DMZ Machine.
• Time-based access allows SSH connections to 

the DMZ Machine only during specific times 
(e.g., 8:00 AM to 4:00 PM CST).

• Ensures traffic is forwarded according to 
defined time constraints for security.

Why It Matters:
Time-based access limits exposure to potential 
attacks by only allowing connections during 
authorized time windows, reducing the risk of 
unauthorized access during off-hours.



Time-based Access
This slide shows a successful ping test to verify 
time-based access rules.
•Tool: ping command on the Ubuntu Web Machine
• Details:
• The ping command successfully sends and 

receives packets from 172.16.0.50.
• Indicates that the time-based access rules allow 

network traffic during the permitted window.
• 3 packets were transmitted and received with 0% 

packet loss, confirming connectivity.
Why It Matters:
Verifying connectivity helps ensure that the time-
based access rules are functioning correctly. It 
demonstrates that access is permitted within the 
specified time frame, enhancing network security 
and controlled access.



Time-based Access
This slide demonstrates successful SSH access 
during the allowed time window.
•Tool: SSH connection from the Ubuntu Web 
Machine to the DMZ Machine at 172.16.0.50.
• Details:
• The SSH session connects successfully, 

prompting for a password.
• The login is authenticated, and the terminal 

displays the OWASP Broken Web Apps VM 
console.

• Shows administrative access to manage or 
configure the DMZ machine.

Why It Matters:
This confirms that the time-based access rule 
allows SSH connections only during the specified 
time frame. It helps ensure secure remote access 
to critical machines while limiting exposure to 
unauthorized users outside the allowed hours.



Conclusion and Key Takeaways

Throughout this course, I gained valuable hands-on experience 
with essential cybersecurity tools and techniques. In Module 2, I 
learned to capture and analyze network traffic using Wireshark, 
which allowed me to identify different types of attacks. Module 
3 focused on SSL/TLS encryption using OpenSSL, where I 
created and tested encryption keys and certificates and 
decrypted traffic in Wireshark. In Module 4, I explored Snort for 
intrusion detection, analyzed alerts generated by different 
scans, and created custom rules to detect specific traffic. 
Module 5 provided insights into live memory analysis using 
tools like Volatility, Process Hacker, and Process Monitor to 
identify running processes, memory dumps, and registry 
changes. Finally, in Module 6, I configured firewall rules with 
iptables to implement time-based access, blackhole routing, 
bogon filtering, and stateful firewall configurations. These 
modules have equipped me with practical skills for network 
defense, intrusion detection, and system analysis, laying a solid 
foundation for real-world cybersecurity roles and further 
certification.



Challenges Faced

Completing this project presented several challenges that 
tested my problem-solving and technical skills. One major 
challenge was navigating the different virtual machines and 
ensuring they were properly configured for each module. 
Switching between environments like the Security Onion IDS, 
Ubuntu Web, and Malware VM required careful attention to 
detail and time management. Additionally, understanding and 
executing complex commands in tools like Wireshark, 
OpenSSL, Snort, and iptables required thorough research and 
practice. Troubleshooting errors, such as failed SSL connections 
or misconfigured firewall rules, was time-consuming and 
required patience and persistence. Another challenge was 
managing the volume of information and remembering the 
correct steps and commands for each task. Despite these 
obstacles, overcoming these challenges provided me with 
valuable hands-on experience and a deeper understanding of 
cybersecurity tools and techniques, preparing me for real-world 
applications.



Career Skills Obtained

Through this course, I have gained essential skills that are valuable for a successful 
career in cybersecurity. These include:

• Network Traffic Analysis: Proficiency in using Wireshark to capture, analyze, 
and interpret network traffic for threat detection and performance monitoring.

• Intrusion Detection and Prevention: Experience in deploying and configuring 
Snort to identify and respond to network-based attacks.

• Cryptographic Analysis: Understanding of SSL/TLS protocols and the ability 
to create, test, and decrypt encrypted communications using OpenSSL.

• Live Memory Forensics: Skills in analyzing system memory using tools like 
Volatility, Process Hacker, and Process Monitor to identify malicious 
processes and anomalies.

• Firewall Configuration: Competence in securing networks through iptables by 
implementing access controls, blackhole routing, and stateful inspection.

• Problem-Solving and Troubleshooting: Ability to troubleshoot complex 
configurations, identify errors, and resolve issues effectively across multiple 
environments.

These skills are foundational for roles such as Security Analyst, Network 
Administrator, Incident Responder, and Forensic Investigator, providing the 
technical expertise needed to protect and defend digital assets.



References

• DeVry University SEC290 Course Materials

• Wireshark Documentation

• OpenSSL User Guide

• Snort User Manual

• Process Hacker Documentation

• Process Monitor Guide

• Volatility Framework Documentation

• iptables Manual and Linux Kernel Documentation


	Slide 1: Intrusion Detection, Firewall, and Network Analysis 
	Slide 2: Introduction to the Project 
	Slide 3: Intrusion Analysis with Wireshark 
	Slide 4: Intrusion Analysis with Wireshark Basic attack analysis
	Slide 5: OpenSSL Analysis 
	Slide 6: Creating and testing an SSL/TLS file
	Slide 7: Creating and testing an SSL/TLS file cont’d
	Slide 8: Intrusion Detection with Snort 
	Slide 9: Testing Snort rules
	Slide 10: Testing Snort rules cont’d
	Slide 11: Creating Snort rules
	Slide 12: Creating Snort rules cont’d
	Slide 13: Live Memory Analysis 
	Slide 14: Linux Processes
	Slide 15: Process Hacker
	Slide 16: Process Monitor
	Slide 17: Firewall Configuration with iptables 
	Slide 18: Time-based Access
	Slide 19: Time-based Access
	Slide 20
	Slide 21: Conclusion and Key Takeaways 
	Slide 22: Challenges Faced 
	Slide 23: Career Skills Obtained 
	Slide 24: References 

